

# Antenna Tuners (Antenna Couplers)



### What is an Antenna Tuner?

- An antenna tuner (coupler is a more correct term) is an impedance matching device which minimizes "mismatch" loss (maximizes power transfer).
- NOT different from any other impedance matching circuit. It does NOT tune the antenna!
- Old R.L. Drake devices were named MN-4, MN-2000, MN-2700. Guess what the MN stands for.
- Also referred to as coupler, antenna coupler, transmatch, Matchbox, etc.



- An antenna operated at its resonant frequency doesn't need a coupler.
  - No, resonance only means the feed point is resistive and does not mean a low SWR.
- Resonant antennas radiate better than nonresonant antennas.
  - No, pattern may change from that at resonance and will need to match.
- Most antennas are resonant at only one frequency.
  - No, all antenna have multiple resonances.



- The ability to match is more important than efficiency when choosing a coupler.
  - Yes, if the coupler doesn't match not much else matters.
- Coupler affects magnitude of current to antenna.
  - Yes, this is how matching works.
- Coupler does not affect the pattern of the antenna.
  - Should be Yes, but only if the ratio of any common mode current on the feed line to the antenna currents remains the same.



- The SWR presented by an antenna is minimum at the fundamental resonant frequency.
  - No, often SWR is minimum but not a requirement.
- A coupler placed at the antenna will always result in a more efficient system than one placed at the transmitter.
  - Generally Yes, but impedance at antenna is different and coupler might not be able to match or be as efficient for this impedance.



- Does 50Ω coax need to be used between coupler and transmitter?
  - No, but do not use SWR meter in coupler if not  $50\Omega$ .
- True open wire #12ga.  $600\Omega$  transmission line has lower loss than 1/2"  $50\Omega$  coax.
  - Generally Yes, however if load is 5+j0, SWR on  $50\Omega$  line is 10:1 & 120:1 on open wire line. Loss for 100 at 7MHz is 2.12dB (open wire) & 1.02dB (LMR-500).
- Couplers should not be cascaded.
  - Yes, if both auto-couplers but no otherwise.



- A multiband coupler will have reduced matching at both the top and bottom of the frequency range.
  - Yes!
- A coupler in a radio that is specified to match 3:1
   SWRs matches all 3:1 SWRs and not much else.
  - No!
- Couplers do not exist at VHF and above.
  - No, but construction is done with transmission line sections and not lumped components.



## Does Coupler Use = Incompetency?

- Chest pounding by some would imply so.
  - I don't need a tuner since my antennas are designed properly. Tuners have too much loss. Idiots abound!
- A coupler is <u>one</u> of many tools that can be used.
- Couplers are more popular today than ever.
  - Covenants, small lot sizes, 11 HF bands (inc. 6m), etc.
  - The issue of stealth and camouflaged antennas could easily be another talk.



### Choices?

- You don't have antennas to cover all desired frequencies with an acceptable SWR for your equipment.
  - Do nothing and just don't operate on some frequencies.
  - Lack of knowledge point of view. Most common and probably best if there are frequent antenna changes!
  - Estimating the impedance(s) needed to match by analysis or tables.
  - Knowing very closely the impedance(s) needed to match by measurement.



## What do you really want/need?

- Matches nearly everything?, Match = 1.0:1 SWR?
- Improve SWR bandwidth?, Hardly ever adjusted?
- Peak/average power (mfg. ratings not reliable)?
- Adjust at low power?, Adjust at full power?
- Adjusts or can be adjusted very quickly?
- 160-10m, 80-10m, 6m, single band?
- Harmonic or band pass filtering?, Static bleed?
- Remotable?, Some combination of the above?



## Matching Network Components

- Generally constructed from reactive components.
  - Exceptions: transmission lines, delta match, resistances such as the  $800\text{-}900\Omega$  resistor in the B&W terminated folded dipole, etc.
- Why reactive components?
  - Reactive components with high unloaded Qs do not dissipate much power.
  - However physically large components have reduced ranges and more stray inductance and capacitance.
  - Transmission line components ~ Q=100.



## **DIY** Coupler

- In approximate order of ascending cost
  - 1) Fixed inductor
  - 2) Small value fixed capacitor
  - 3) Air variable capacitor
  - 4) Air differential capacitor
  - 5) Large voltage fixed capacitor
  - 6) High voltage/current switch
  - 7) Vacuum variable capacitor
  - 8) Roller inductor

12



## Types of Tuners

- Auto, semi-auto, manual adjust, or fixed.
- Variable, switched, and/or fixed components.
- Is coupler part of transmitter or antenna?
  - If part of the antenna then changing transmitters easy.
- Included balun, antenna switch, dummy load etc.
- Power rating and matching range. Total BS!
- Coupler/antenna as a system (military & aircraft).
- No mention yet of coupler topology.

## Tying it all together

• Reflection 
$$\Gamma = \frac{Z_L - Z_O}{Z_L + Z_O}$$
  $\rho = |\Gamma|$   $\rho = \frac{SWR - 1}{SWR + 1}$ 

• SWR: 
$$SWR = \frac{1+\rho}{1-\rho}$$
  $\rho = \sqrt{\frac{(R_L - R_O)^2 + (X_L)^2}{(R_L + R_O)^2 + (X_L)^2}}$ 

Return Loss:

$$RL_{dB} = -20 \times \log_{10}(\rho)$$

$$\frac{\text{Mismatch Loss:}}{\text{ML}_{\text{dB}} = -10 \times \log_{10} \left(\frac{P_{\text{Fwd}} - P_{\text{Ref}}}{P_{\text{Fwd}}}\right) = -10 \times \log_{10} \left(1 - \rho^{2}\right)}$$

 $P_{Ref} = P_{Ewd} \times \rho^2$ 

 $P_{Load} = P_{Fwd} - P_{Ref}$ 

6/1/2011 Larry Benko, W0QE 14



| SWR | ρ    | Return<br>Loss (dB) | Mismatch<br>Loss (dB) | Power<br>To Load <sup>1</sup> |
|-----|------|---------------------|-----------------------|-------------------------------|
| 1.1 | 0.05 | 26.44               | 0.01                  | 100%                          |
| 1.2 | 0.09 | 20.83               | 0.04                  | 99%                           |
| 1.5 | 0.20 | 13.98               | 0.18                  | 96%                           |
| 2   | 0.33 | 9.54                | 0.51                  | 89%                           |
| 2.5 | 0.43 | 7.36                | 0.88                  | 82%                           |
| 3   | 0.50 | 6.02                | 1.25                  | 75%                           |
| 5   | 0.67 | 3.52                | 2.55                  | 56%                           |
| 10  | 0.82 | 1.74                | 4.81                  | 33%                           |
| 20  | 0.90 | 0.87                | 7.41                  | 18%                           |
| 50  | 0.96 | 0.35                | 11.14                 | 8%                            |

Note 1: Does not include additional loss in transmission line due to SWR or any fold back in transmitter.



## Voltages and Currents

$$Vpk = \sqrt{2 \times P \times R_o}$$

$$Irms = \sqrt{\frac{P}{R_o}}$$

$$Vpk \le \sqrt{2 \times P \times R_o \times SWR}$$

$$Irms \le \sqrt{\frac{P \times SWR}{R_O}}$$





| SWR  | Power | Vpk(max) | Irms(max) |
|------|-------|----------|-----------|
| 1:1  | 100W  | 100V     | 1.41A     |
|      | 1500W | 387V     | 5.48A     |
| 3:1  | 100W  | 173V     | 2.45A     |
|      | 1500W | 671V     | 9.5A      |
| 10:1 | 100W  | 316V     | 4.47A     |
|      | 1500W | 1225V    | 17.3A     |
| 20:1 | 100W  | 447V     | 6.32A     |
|      | 1500W | 1732V    | 24.5A     |
| 50:1 | 100W  | 797V     | 10.0A     |
|      | 1500W | 2739V    | 38.7A     |



## Stresses Within the Tuner @ 1500W

All are 20:1 SWRs. Stresses & losses are different.



6/1/2011 Larry Benko, W0QE 18



## "Small" Antenna Examples

- Example#1
  - 1.8MHz using 40m (67.2') dipole, 50' high, #12 Cu wire
  - -Z = 1.60 j2420 (SWR ~73000:1)
  - Irms = 30.6A (1500W), Vpk = 104.7kV
- Example #2
  - 1.8MHz using 80m (135') dipole, 50' high, #12 Cu wire
  - -Z = 5.9 j1080 (SWR ~3950:1)
  - Irms = 15.94A (1500W), Vpk = 24.3kV
- No tuners match these impedances well!
- A little loss is desperately needed.



### What is the Smith Chart

- A polar plot of the reflection coefficient including phase.
- This results in:
  - Plots of constant SWRs are circles.
  - Inductive impedances are above the center line.
  - Capacitive impedances are below the center line.
  - The horizontal axis goes from  $0\Omega$  at the far left to  $R_0$  at the center to infinity at the far right.











## Sample Design Goals

- Match all SWRs of at least 20:1 from 160m thru 20m with reduced SWRs up thru 6m.
- Do the basic design on 40m realizing that 4X more C & L will be needed on 160m etc.
- Ignore stray C & L for now.
- Explain old Johnson Matchbox with open wire line and large antennas vs today's use of a coupler.



## Low Pass "L" Network Type "A"

- Shunt "C" on ANT Side
- Series "L"
- Need >Cmax & <Cmin</p>







## Low Pass "L" Network Type "B"

- Shunt "C" on TX Side
- Series "L"
- Need <Lmin & >Cmax







### Low Pass "L" Network Results

- Cmax ~= 8000pF & Lmax ~= 20uH on 160m
- Cmin ~= 5pF & Lmin ~= .02uH on 6m
- Pretty ugly component values.
- This happens when only 2 adjustable components, wide frequency, & wide matching range are wanted.
- Need some switchable offset components or variable offset components to help match especially on the higher frequencies.



## High Pass "L" Network Type "C"

- Shunt "L" on ANT Side
- Series "C"
- Need >Lmax (not good)







## High Pass "L" Network Type "D"

- Shunt "L" on TX Side
- Series "C"
- Need >Cmax (not good)







## High Pass "L" Network Results

- Worse component values than Low Pass "L".
- Variable component "L" networks are not commonly used for wide range matching on the lower frequencies for good reason.
- Low Pass "L" networks are used in most switched component tuners with reduced 160m & 80m matching range.
- Often good choice if match impedance is known.



## Adding a 3<sup>rd</sup> Component

- Does adding a 3<sup>rd</sup> adjustable component help the matching range?
- Could the Low Pass "Pi" could be this network?
- A "Pi" network is still a 2 terminal network.



- Great matching range
- Similar component values to the Low Pass "L" network







- Great matching range
- Notice new scaled component values!







Still good matching range







- Not good matching range
- Needs <Cmin and <Lmin</p>



6/1/2011



## WOOE

#### Low Pass "Pi" Network

- Very good matching range
- Modified for Cmin which includes stray C to Gnd
- Includes stray L on input and output







- Very good matching range
- Modified for <Cmin which includes stray C to Gnd</li>
- Includes stray L on input and output
- 6m range better than10m due to 0.05uH







- Neither the "L" or Low Pass "Pi" networks seems like a good candidate for use as an all band general matching network.
- The "Tee" network has an effective 3<sup>rd</sup> node which increases flexibility at the expense of possible additional loss.
- 80-90% of any coupler loss is in the inductor(s) so improving inductor Q can offset loss concerns.



- Pretty easy to see why the high pass "Tee" network is popular
- Nice component values







Great matching range







Still great matching range







Very good matching range







 Obvious why the High Pass "Tee" is popular







- What if we include the stray Cs & Ls
- Still great matching range





# WOQE

# High Pass "Tee" Network

- Matching range is poor
- Lmin is too large (reactance = +j63 @50MHz)







## Fixed "L" High Pass "Tee" Network

- Fixed "L" can cover 2 bands pretty well.
- Inductor easy to make very high Q.
- Coupler best @ ~5MHz
- Matches all 10:1 SWRs& 95% of 20:1 SWRs







# Fixed "L" High Pass "Tee" Network

Matches all 5:1 SWRs &75% of 20:1 SWRs



6/1/2011





## Fixed "L" High Pass "Tee" Network

Matches all 7:1 SWRs,60% of 10:1 SWRs, &40% of 20:1 SWRs







# Other Network Topologies

• Lew McCoy W1ICP, Ultimate Transmatch (1970)



Doug DeMaw W1FB, SPC Transmatch (1980)



Both had minimal to moderate harmonic suppression with a reduction in matching range vs the basic High Pass "Tee".



# Other Network Topologies

- Link Coupled (Johnson Matchbox)
  - Very good for higher R matches
  - Link coupling very efficient
- High Pass Differential Tee (MFJ & later Palstar)
  - Only 2 controls to adjust



Slightly to significantly more loss than standard High Pass Tee & reduced matching range on higher frequencies but easier to adjust.



## High Pass Differential "Tee" Network

 Based on measurements and component values of the Palstar AT-Auto with last version of inductor



S11





Palstar AT-Auto



• S11 —5:1





Palstar AT-Auto



• S11 —5:1



#### High Pass Differential "Tee" Network

- Palstar AT-Auto
- No longer matches all 5:1
   SWRs
- Add 4' of  $50\Omega$  .66VF coax for 90 deg. CW rotation if needed.







# High Pass Differential "Tee" Network

- Palstar AT-Auto
- Matching range severely reduced





# WOOE

## High Pass Differential "Tee" Network

- Palstar AT-Auto
- Matching range very limited







# The End!



# Other Topics

- Why might a full sized dipole need matching?
- Coupler topologies and stresses.
- Converting series to parallel impedances.
- Johnson Matchbox or other link couplers.
- Quarter wave section for variable impedances.
- Transmission line only tuner.
- Complex conjugate impedances.
- Graphical look at reflections.



# Does a Full Sized Dipole Need Matching?



#### Height of Center of Vertical Half-Wave in Wavelengths



Fig 1—Variation in radiation resistance of vertical and horizontal half-wave antennas at various heights above flat ground. Solid lines are for perfectly conducting ground; the broken line is the radiation resistance of horizontal half-wave antennas at low height over real ground. Chapter 3, ARRL Antenna Book 21st edition



# Dipole Matching

- 7.0MHz = 88.9 j13.8 7.1MHz = 93.2 + j8.1 7.2MHz = 97.7 + j29.9 7.3MHz = 102.2 + j51.5
- Match with 99 deg. of  $75\Omega$  transmission line at antenna. SWR < 1.4:1 across entire band.
- Match with 2.55uH across antenna and 408pF in series toward TX. SWR < 1.4:1 across entire band.</li>
- All matches with Q significantly less than the Q of the dipole will have 1.4:1 band edge SWRs.



# Z = 20 - j0 (SWR 2.5:1), 28MHz, 1500W

| Type           | Transmitter Side |               | Antenna Side |
|----------------|------------------|---------------|--------------|
| LP-"L"         | Cp = 139.2pF     | Ls = 0.14uH   |              |
| Cp-Ls          | 387Vpk, 6.7A     | 300Vpk, 8.7A  |              |
| HP-"L"         | Lp = 0.23uH      | Cs = 232pF    |              |
| Lp-Cs          | 387Vpk, 6.7A     | 300Vpk, 8.7A  |              |
| HP-"Tee" 250pF | Cs1 = 250pF      | Lp = 0.18uH   | Cs2 = 200pF  |
| Cs1-Lp-Cs2     | 176Vpk, 5.5A     | 426Vpk, 9.4A  | 348Vpk, 8.7A |
| HP-"Tee" 500pF | Cs1 = 500pf      | Lp = 0.20uH   | Cs2 = 223pF  |
| Cs1-Lp-Cs2     | 88Vpk, 5.5A      | 397Vpk, 8.0A  | 313Vpk, 8.7A |
| LP-"Pi" 200pF  | Cp1 = 188.1pF    | Ls = 0.18uH   | Cp = 200pF   |
| Cp1-Ls-Cp2     | 387Vpk, 9.1A     | 472Vpk, 10.6A | 245Vpk, 6.1A |

6/1/2011 Larry Benko, W0QE 60



# Z = 5 - j200 (SWR 157:1), 1.8MHz, 1500W

| Type            | Transmitter Side |                 | Antenna Side   |
|-----------------|------------------|-----------------|----------------|
| LP-"L"          | Cp = 5302pF      | Ls = 19.01uH    |                |
| Cp-Ls           | 387Vpk, 16.4A    | 5265Vpk, 17.3A  |                |
| HP-"L"          | Cs = 140.3pF     | Lp = 13.45uH    |                |
| Cs-Lp           | 4882Vpk, 5.5A    | 4897Vpk, 22.8A  |                |
| HP-"Tee" 250pF  | Cs1 = 50.7pF     | Lp = 37.17uH    | Cs2 = 250pF    |
| Cs1-Lp-Cs2      | 13511Vpk, 5.5A   | 13517Vpk, 22.7A | 8634Vpk, 17.3A |
| HP-"Tee" 500pF  | Cs1 = 74.4pF     | Lp = 25.31uH    | Cs2 = 500pF    |
| Cs1-Lp-Cs2      | 9205Vpk, 5.5A    | 9213Vpk, 22.8A  | 4323Vpk, 17.3A |
| HP-"Tee" 1000pF | Cs1 = 97.2pF     | Lp = 19.38uH    | Cs2 = 1000pF   |
| Cs1-Lp-Cs2      | 7046Vpk, 5.5A    | 7056Vpk, 22.8A  | 2163Vpk, 17.3A |
| LP-"Pi" 100pF   | Cp1 = 6621pF     | Ls = 15.53uH    | Cp = 100pF     |
| Cp1-Ls-Cp2      | 387Vpk, 20.5A    | 5270Vpk, 21.2A  | 4897Vpk, 3.9A  |
| LP-"Pi" 1000pF  | Cp1 = 18103pF    | Ls = 5.85uH     | Cp = 1000pF    |
| Cp1-Ls-Cp2      | 387Vpk, 56.1A    | 5270Vpk, 56.3A  | 4884Vpk, 39.1A |



# Z = 2000 - j0 (SWR 40:1), 7.0MHz, 1500W

| Type           | Transmitter Side |               | Antenna Side  |
|----------------|------------------|---------------|---------------|
| LP-"L"         | Ls = 7.10uH      | Cp = 71.0pF   |               |
| Ls-Cp          | 2148Vpk, 5.5A    | 2449Vpk, 5.4A |               |
| HP-"L"         | Cs = 72.8pF      | Lp = 7.28uH   |               |
| Cs-Lp          | 2418Vpk, 5.5A    | 2449Vpk, 5.4A |               |
| HP-"Tee" 250pF | Cs1 = 72.7pF     | Lp = 7.23uH   | Cs2 = 250pF   |
| Cs1-Lp-Cs2     | 2421Vpk, 5.5A    | 2452Vpk, 5.4A | 111Vpk, 0.9A  |
| HP-"Tee" 500pF | Cs1 = 72.8pF     | Lp = 7.25uH   | Cs2 = 500pF   |
| Cs1-Lp-Cs2     | 2419Vpk, 5.5A    | 2450Vpk, 5.4A | 56Vpk, 0.9A   |
| LP-"Pi" 250pF  | Cp1 = 250pF      | Ls = 6.74uH   | Cp = 81pF     |
| Cp1-Ls-Cp2     | 387Vpk, 3.0A     | 2610Vpk, 6.2A | 2449Vpk, 6.2A |
| LP-"L"         | Ls = 7.10uH      | Cp = 71.0pF   |               |
| Ls-Cp          | 2148Vpk, 5.5A    | 2449Vpk, 5.4A |               |

6/1/2011 Larry Benko, W0QE 62



# Series/Parallel Conversion

$$Rp = \frac{Rs^2 + Xs^2}{Rs}$$

$$Xp = \frac{Rs^2 + Xs^2}{Xs}$$

$$Rs = \frac{Rp \times Xp^2}{Rp^2 + Xp^2}$$

$$Xs = \frac{Rp^2 \times Xp}{Rp^2 + Xp^2}$$

Note: If impedance was capacitive in series form then it is still capacitive in parallel form. Same is true for inductive impedances. Sign of Xp and Xs is the same.



## 80m full size dipole

- #12 wire up 40'
- No feedline
- Pink dot = 1.8MHz

What can be expected when used at all HF frequencies?





#### 80m full size dipole

- 50' of .66VF 50 $\Omega$  lossless coax

Very wide range of impedances!

Even if loss in real coax is ignored this is a tough matching problem.





#### 80m full size dipole

- 50' of  $600\Omega$  lossless open wire line

Notice how impedances are high at all freq. above 3.5MHz.

The Johnson Matchbox efficiently matches higher impedances!





#### **Lossless Transmission Line Reflections**









#### **Lossless Transmission Line Reflections**

#### 1 electrical wavelength @ 14MHz







#### **Lossless Transmission Line Reflections**

#### 1 electrical wavelength @ 14MHz







# **Smith Chart**

- Smith Chart basics
  - Zo at center, constant SWR = circles
  - X axis is reflection coefficient (-1 to +1)
  - Top half is inductive, bottom half is capacitive
  - Need to think in terms of Z = R + /-jX & Y = G + /-jB
- The Smith Chart allows the user to see graphical solutions to matching problems which enhances the understanding of impedance matching
- Smith Chart could easily be an entire presentation











































# Surge Impedance Again

• Zo =  $\sqrt{L/C}$  per unit length, equivalent circuit no loss

• Zo = 
$$\left(\frac{138}{\sqrt{\varepsilon}}\right) * \log_{10}\left(\frac{OD}{ID}\right)$$
 for round coax

- Why a particular impedance?
  - Maximum power  $30\Omega$ , minimum loss  $77\Omega$ , max. voltage breakdown  $60\Omega$  (1929 Bell Laboratories Study)
  - Maximum power per pound of copper  $52\Omega$  (F. Terman?)
  - Today 75Ω, 50Ω, 52Ω, 53.5Ω, 25Ω, 80Ω, 93Ω, etc.